Skip to main content

Future of Urban Mobility - Key Challenges

This is the first in a series of blog posts on the future of Urban Mobility.
Our ability to ensure clean and convenient mobility in our cities is key to the sustainable growth of our economy. Volatile fuel prices, rising levels of emissions and traffic congestions are the key challenges that we face in most Indian cities today. 
We need the best of our young minds to look at emerging technologies, like smart and connected vehicles, to overcome these challenges. I expect that urban mobility, both personal and commercial, will be shaped by disruptive technologies such as:
the move to on-demand mobility,
the impact of autonomous vehicles and
the growth of electric vehicles
There are three big challenges
Challenge # 1 - How to achieve Zero Vehicular Emission ?

I was in New Delhi during December 2015 for a Conference and the visibility was very poor due to smog even in the middle of the day.

Challenge # 2 - How to achieve Zero Accidents ?

Millions of lives are lost every year due to accidents that can well be avoided  by using connected technology. Millions more are immobilized or severely shocked due to the loss of near and dear ones.

Challenge # 3 - How to achieve Zero Traffic Congestion ?


I lived in Bangalore for the last few year where you can see such traffic jams in every other road. A city like Bangalore cannot sustain its current growth rate unless they figure out a way to remove such traffic congestions and ensure a smooth flow of traffice. I have spent many hours in such traffic jams and I have seen ambulances or fire brigade engines stranded in such situations.
Achieving Zero Emission with Electric Vehicles
Let us look at the Challenge # 1 of reducing vehicular emission to zero, electric vehicles are promising solutions. But if we use electricity derived from fossil fuels too power these electric cars, then we are achieving our objective. Hence we need to define and track emissions across the entire process "Well-to-Wheel"
A zero-emissions vehicle does not emit greenhouse gases from the on board source of power at the point of operation, but a well-to-wheel assessment takes into account the carbon dioxide and other emissions produced during electricity generation, and therefore, the extent of the real benefit depends on the fuel and technology used for electricity generation. From the perspective of a full life cycle analysis, the electricity used to recharge the batteries must be generated from renewable or clean sources such as wind, solar, hydroelectric, or nuclear power for ZEVs to have almost none or zero well-to-wheel emissions. 
Renewable energy sources like solar & wind need to be used to charge the electric vehicles. The cost per watt of solar photovoltaic has reduced by 85 % during 2000 - 2016. The share of solar & wind in global electricity production is expected to rise to 16 %.
In fact, Scientific American published (Nov 2009) a plan to power 100% of the planet with Renewables - authored by #MarkJacobson (Stanford University) and #MarkDelucci (University of California, Davis):
  • The authors’ plan calls for 3.8 million large wind turbines, 90,000 solar plants, and numerous geothermal, tidal and rooftop photovoltaic installations worldwide. 
  • The cost of generating and transmitting power would be less than the projected cost per kilowatt-hour for fossil fuel and nuclear power. 
  • Shortages of a few specialty materials, along with lack of political will, loom as the greatest obstacles. 

https://web.stanford.edu/group/efmh/jacobson/Articles/I/sad1109Jaco5p.indd.pdf

Now we are talking about electric cars powered by solar photovoltaic - is this a feasible idea ? Elon Musk has looked at this aspect in detail and provides a convincing argument:
https://www.teslamotors.com/blog/electric-cars-and-photovoltaic-solar-cells

Q: How many solar panels do I need to power my Tesla Roadster? 
A: The Tesla Roadster consumes about 200 watt-hours per mile. Suppose you drove 35 miles per day on average (12,775 miles per year). You would need to generate 2.6 MWh/year. By Elon’s math, monocrystalline solar panels generate about 263 kWh/m2/year in the USA. So you would need about 9.7 square meters of solar panels (a square about 10 feet on a side) to completely offset the energy consumed by your Tesla Roadster. Obviously, you can’t fit these on the roof of your car. But you can hire a company like Solar City to install them on your house – where the panels are mounted at the right angle, and are in the shade as little as possible.
Here is a back-of-the-envelop calculation from #ElonMusk
The below results in a payback period of roughly 2 and a half years. The NREL study similarly calculates the payback period for polycrystalline panels to be 3-5 years, and amorphous silicon panels to be 0.5-2 years. Given that most modules have a 25 year warranty and an expected useful life in excess of 30 years, this indicates about a ten to one advantage for energy generated versus consumed.
Taking the monocrystalline silicon example:
Solar incidence (US):1825 kWh/m2/year
Module efficiency:18% (Sunpower)
Energy lost in system:20% (Due to inverter, wires, cell temperature, etc.)
Total energy produced:
263 kWh/m2/year
Energy to create module:600 kWh/m2 (National Renewable Energy Lab.)
… to build aluminum frame:80 kWh/m2 (from Alsema et al)
Total energy used:
680 kWh/m2

Key Takeaway:
Thus an easy way to achieve zero emission from vehicles is to go for electric vehicles that are powered by solar photovoltaics. 
Key Concern - Energy Storage beyond Lithium :
As all renewable sources are intermittent by their very nature, we need energy storage mechanisms in place to ensure continuous supply of power. The current energy storage technology based on lithium ion batteries has many shortcomings and we need to think beyond lithium and explore alternative technologies for future use. But that is a long story and we will save this topic for the next blog post.

Comments

  1. Relicell Inverter batteries are specially designed to encapsulate the plates with gel electrolyte to prevent shedding.
    Battery Manufacturing Company in India | Solar battery manufacturers

    ReplyDelete
  2. you are in point of fact a just right webmaster. The web site loading speed is amazing. It seems that you are doing any distinctive trick. In addition, The contents are masterpiece. you have done a great task on this topic! confederate service files


    ReplyDelete
  3. Надаємо комерційний переклад в Києві з урахуванням вашого бізнесу. Наші професійні перекладачі готові до співпраці. Звертайтеся до нас Translation Center
    для найкращих умов!

    ReplyDelete

Post a Comment

Popular posts from this blog

Why & How we should study AI & Machine Learning (6 Easy Steps)

AI & ML are fundamental new technologies that can create immense value to humankind. It is very important for us to learn AI & ML and apply this knowledge in our work.  If you are somebody like me without prior exposure to computers, you may wonder where to begin the journey – I did some homework and found an easy step-by-step using online resources . It takes only 6 easy steps to gain mastery in AI & ML. I will start with sharing with you the talk that Risto Siilasmaa (Chairman, Nokia) gave in Nov, 2017 – “Why you should study AI and Machine Learning and how I did it”. Step # 1 - Risto Siilasmaa started his journey into AI & ML by asking, “Where could I find good material explaining how machine learning works in terms that would speak to an engineer who loves to understand how things work?” Step # 2 - “ Why not study machine learning myself and then explain what I learned to others who are struggling with the same questions. Perhaps I could mo...

Making Pirate Ships out of MRI - Design Thinking at its best

"..most effective insights we got came from kneeling down and  looking at rooms from the height of a child"  - Doug Dietz   http://www.healthymagination.com/stories/pediatric-adventures/ This is the story of how Doug Dietz transformed a MRI machine into a Pirate Ship. Doug is an expert in designing advanced medical equipments like the MRI. When he was at a hospital, he was pained to observe how a small child was so terrified to enter the machine for a scan. Thats when he felt the needs for understanding his customers - the kids in thsi case - and design his product in such a way that make his customers feel comfortable. He transformed teh huge MRI equipment into a pirate ship so that the kids are mesmerized by the experience of entering a pirate ship when they are getting scanned. I learnt about this from a TED Talk that Daid Kelley (of IDEO) gave on  How to build your creative confidence" -  http://www.youtube.com/watch?v=16p9YRF0l-...

Archimedes' Bathtub, Newton's Apple and Einstein's Chair

When do Great Ideas come ? .... after Incubation  Archimedes had his bath, Galileo had his leaning tower,  Newton had his apple, and Einstein had his chair. All these Inventors were (a) intensely focused on solving specific physics problems (b) they had each looked at a variety of promising ideas, but reached an impasse after some stage (c) they smartly decided to move away from the scene - took a break (d) after some time, a fresh idea popped into their Mind (e) they recognized the potential of the idea and held on to it (f) they diligently worked on it  and finally developed a real breakthrough concept. Many Inventors have shared the vale of incubating their idea and described specific instances where the incubation phase is followed by a sudden enlightenment. We have heard the stories of Archimedes, Galileo and Newton too often - so let us focus on Einstein's story. You might have heard of Einstein's Violin but not about his chair - the chair that gave...