This is the first in a series of blog posts on the future of Urban Mobility.
Our
ability
to ensure clean and convenient mobility in
our cities is key to the sustainable growth of our economy. Volatile
fuel
prices, rising levels of emissions and traffic congestions are the key
challenges that we face in most Indian cities today.
We
need the best of our young minds to look at emerging technologies, like smart
and connected vehicles, to overcome these challenges. I
expect that urban mobility, both personal and commercial, will be
shaped by disruptive technologies such
as:
the
move to on-demand mobility,
the
impact of autonomous
vehicles and
the
growth of electric
vehicles.
There are three big challenges
Challenge # 1 - How to achieve Zero Vehicular Emission ?
I was in New Delhi during December 2015 for a Conference and the visibility was very poor due to smog even in the middle of the day.
Challenge # 2 - How to achieve Zero Accidents ?
Millions of lives are lost every year due to accidents that can well be avoided by using connected technology. Millions more are immobilized or severely shocked due to the loss of near and dear ones.
Challenge # 3 - How to achieve Zero Traffic Congestion ?
I lived in Bangalore for the last few year where you can see such traffic jams in every other road. A city like Bangalore cannot sustain its current growth rate unless they figure out a way to remove such traffic congestions and ensure a smooth flow of traffice. I have spent many hours in such traffic jams and I have seen ambulances or fire brigade engines stranded in such situations.
Achieving Zero Emission with Electric Vehicles
Let us look at the Challenge # 1 of reducing vehicular emission to zero, electric vehicles are promising solutions. But if we use electricity derived from fossil fuels too power these electric cars, then we are achieving our objective. Hence we need to define and track emissions across the entire process "Well-to-Wheel"
A
zero-emissions
vehicle does not emit greenhouse gases from the on board source of
power at the point of operation, but
a well-to-wheel
assessment
takes into
account the carbon dioxide and other emissions produced during electricity
generation, and therefore, the
extent
of the real benefit depends on the fuel and technology used
for electricity generation. From
the perspective of a full life cycle analysis, the electricity used to
recharge the batteries must be generated from renewable or clean sources such
as wind, solar, hydroelectric, or nuclear power for
ZEVs to have almost none or zero well-to-wheel emissions.
Renewable energy sources like solar & wind need to be used to charge the electric vehicles. The cost per watt of solar photovoltaic has reduced by 85 % during 2000 - 2016. The share of solar & wind in global electricity production is expected to rise to 16 %.
In fact, Scientific American published (Nov 2009) a plan to power 100% of the planet with Renewables - authored by #MarkJacobson (Stanford University) and #MarkDelucci (University of California, Davis):
- The authors’ plan calls for 3.8 million large wind turbines, 90,000 solar plants, and numerous geothermal, tidal and rooftop photovoltaic installations worldwide.
- The cost of generating and transmitting power would be less than the projected cost per kilowatt-hour for fossil fuel and nuclear power.
- Shortages of a few specialty materials, along with lack of political will, loom as the greatest obstacles.
https://web.stanford.edu/group/efmh/jacobson/Articles/I/sad1109Jaco5p.indd.pdf
Now we are talking about electric cars powered by solar photovoltaic - is this a feasible idea ? Elon Musk has looked at this aspect in detail and provides a convincing argument:
https://www.teslamotors.com/blog/electric-cars-and-photovoltaic-solar-cells
Q: How many solar panels do I need to power my Tesla Roadster?
A: The Tesla Roadster consumes about 200 watt-hours per mile. Suppose you drove 35 miles per day on average (12,775 miles per year). You would need to generate 2.6 MWh/year. By Elon’s math, monocrystalline solar panels generate about 263 kWh/m2/year in the USA. So you would need about 9.7 square meters of solar panels (a square about 10 feet on a side) to completely offset the energy consumed by your Tesla Roadster. Obviously, you can’t fit these on the roof of your car. But you can hire a company like Solar City to install them on your house – where the panels are mounted at the right angle, and are in the shade as little as possible.
Here is a back-of-the-envelop calculation from #ElonMusk
The below results in a payback period of roughly 2 and a half years. The NREL study similarly calculates the payback period for polycrystalline panels to be 3-5 years, and amorphous silicon panels to be 0.5-2 years. Given that most modules have a 25 year warranty and an expected useful life in excess of 30 years, this indicates about a ten to one advantage for energy generated versus consumed.
Taking the monocrystalline silicon example:
Solar incidence (US): | 1825 kWh/m2/year |
Module efficiency: | 18% (Sunpower) |
Energy lost in system: | 20% (Due to inverter, wires, cell temperature, etc.) |
Energy to create module: | 600 kWh/m2 (National Renewable Energy Lab.) |
… to build aluminum frame: | 80 kWh/m2 (from Alsema et al) |
Key Takeaway:
Thus an easy way to achieve zero emission from vehicles is to go for electric vehicles that are powered by solar photovoltaics.
Key Concern - Energy Storage beyond Lithium :
As all renewable sources are intermittent by their very nature, we need energy storage mechanisms in place to ensure continuous supply of power. The current energy storage technology based on lithium ion batteries has many shortcomings and we need to think beyond lithium and explore alternative technologies for future use. But that is a long story and we will save this topic for the next blog post.
Relicell Inverter batteries are specially designed to encapsulate the plates with gel electrolyte to prevent shedding.
ReplyDeleteBattery Manufacturing Company in India | Solar battery manufacturers
you are in point of fact a just right webmaster. The web site loading speed is amazing. It seems that you are doing any distinctive trick. In addition, The contents are masterpiece. you have done a great task on this topic! confederate service files
ReplyDeleteНадаємо комерційний переклад в Києві з урахуванням вашого бізнесу. Наші професійні перекладачі готові до співпраці. Звертайтеся до нас Translation Center
ReplyDeleteдля найкращих умов!